

Kelly McConville **Stat 100** Week 3 | Fall 2023

Data Wrangling & Summarization

Announcements

- With COVID working its way through campus right now, make sure to check the Sections spreadsheet and the Office hours spreadsheet for updates!
- Let's go through up to upload the pngs of your postcards to the RStudio Server on Posit Cloud.

Goals for Today

- Consider measures for summarizing quantitative data
 - Center
 - Spread/variability
- Consider measures for summarizing categorical data

- Define data wrangling

• Learn to use functions in the dplyr package to summarize and wrangle data

Load Necessary Packages

dplyr is part of this collection of data science packages.

- 1 # Load necessary packages
- 2 library(tidyverse)

4

Import the Data

```
1 july_2019 <- read_csv("data/july_2019.csv")
2
3 # Inspect the data
4 glimpse(july_2019)</pre>
```

Rows: 192

Columns: 8

Summarizing Data

DateTime	Day	Date	Time	Total	Westbound	Eastbound	Occasion
07/04/2019 06:00:00 AM	Thursday	2019- 07-04	06:00:00	1	1	0	Fourth of July
07/04/2019 06:15:00 AM	Thursday	2019- 07-04	06:15:00	4	0	4	Fourth of July
07/04/2019 06:30:00 AM	Thursday	2019- 07-04	06:30:00	9	1	8	Fourth of July
07/04/2019 06:45:00 AM	Thursday	2019- 07-04	06:45:00	5	0	5	Fourth of July

Summarizing Data Visually

- For a quantitative variable, want to answer: • What is an average value? • What is the **trend/shape** of the variable?
- How much variation is there from case to case?

Need to learn key summary statistics: Numerical values computed based on the observed cases.

Measures of Center

Mean: Average of all the observations

- *n* = Number of cases (sample size)
- x_i = value of the i-th observation
- Denote by \bar{x}

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

1 # Test out on first 6 values

2 head(july_2019\$Total)

[1] 2 3 2 0 3 2

Compute with a dplyr function:

	1	<pre>summarize(july_20</pre>
#	Α	tibble: 1 × 1
	me	an_bikes
		<dbl></dbl>
1		17.1

19, mean_bikes = mean(Total))

Measures of Center

Median: Middle value

- Half of the data falls below the median
- Denote by *m*
- If *n* is even, then it is the average of the middle two values
 - 1 # Test out on first 6 values
 - 2 head(july_2019\$Total)

[1] 2 3 2 0 3 2

Compute with a dplyr function:

1 11

summarize(july_2019, median_bikes = median(Total))

Measures of Center

Why is the mean larger than the median?

1 summarize(july_2019, mean_bikes = mean(Total), 2 median_bikes = median(Total))

Computing Measures of Center by Groups Question: Were there more bikes, on average, for Fourth of July or for the normal Thursday?

Computing Measures of Center by Groups

Handy dplyr function: group_by()

- july_2019_grouped <- group_by(july_2019, Occasion)</pre> 1
- 2 july_2019_grouped
- # A tibble: 192 × 8
- # Groups: Occasion [2]

	DateTime		Day	Date	Time	Total	Westbound	Eastbound	Occasion
	<chr></chr>		<chr></chr>	<date></date>	<tim></tim>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
1	07/04/2019	12:00:0	Thur	2019-07-04	00:00	2	2	0	Fourth
2	07/04/2019	12:15:0	Thur	2019-07-04	00:15	3	3	0	Fourth
3	07/04/2019	12:30:0	Thur	2019-07-04	00:30	2	1	1	Fourth
4	07/04/2019	12:45:0	Thur	2019-07-04	00:45	0	0	0	Fourth
5	07/04/2019	01:00:0	Thur	2019-07-04	01:00	3	2	1	Fourth
6	07/04/2019	01:15:0	Thur	2019-07-04	01:15	2	2	0	Fourth
7	07/04/2019	01:30:0	Thur	2019-07-04	01:30	1	1	0	Fourth
8	07/04/2019	01:45:0	Thur	2019-07-04	01:45	0	0	0	Fourth
9	07/04/2019	02:00:0	Thur	2019-07-04	02:00	0	0	0	Fourth
10	07/04/2019	02:15:0	Thur	2019-07-04	02:15	0	0	0	Fourth
#	i 182 more 1	COWS							

Computing Measures of Center by Groups

Compute summary statistics on the grouped data frame:

```
july_2019_grouped <- group_by(july_2019, Occasion)</pre>
1
  summarize(july_2019_grouped,
2
             mean bikes = mean(Total),
3
             median_bikes = median(Total))
4
```

A tibble: 2×3

	Occasion	mean_bikes	median_	bikes
	<chr></chr>	<dbl></dbl>		<dbl></dbl>
1	Fourth of July	10.0		9
2	Normal Thursday	24.2		14.5

And now it is time to learn the pipe: %>%

Chaining dplyr Operations

Instead of:

Use the pipe:

2

3

4

	1	<pre>july_2019_grouped <- group_by(july_2019, Occasion) summarize(july_2019, grouped</pre>							
	2 3 4	<pre>summarize(july_2019_grouped,</pre>							
¥	A Oc	tibble: 2 × 3 ccasion mean bikes median bikes							

<dbl>

10.0

24.2

#	A	tibble:	2	×	3	
	00	ccasion				mean
	<(chr>				

july 2019 %>%

- 1 Fourth of July
- 2 Normal Thursday

• Why pipe?

1 Fourth of July

2 Normal Thursday

<chr>

• You can also use >, which is newer and often referred to as the "base R pipe."

<dbl>

9

14.5

group_by(Occasion) %>% summarize(mean bikes = mean(Total), median bikes = median(Total))

bikes	median	_bikes
<dbl></dbl>		<dbl></dbl>
10.0		9
24.2		14.5

- Want a statistic that captures how much observations deviate from the mean
- Find how much each observation deviates from the mean.
- 1 # Test out on first 6 values 2 head(july_2019\$Total)

```
[1] 2 3 2 0 3 2
```

• Compute the average of the deviations.

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$$

Problem?

• Want a statistic that captures how much observations deviate from the mean

Here is my **NEW** proposal:

```
# Test out on first 6 values
head(july_2019$Total)
```

```
[1] 2 3 2 0 3 2
```

- Find how much each observation deviates from the mean.
- Compute the average of the squared deviations.

• Want a statistic that captures how much observations deviate from the mean

Here is my **ACTUAL** formula:

- Find how much each observation deviates from the mean.
- Compute the (nearly) average of the squared deviations.
- Called sample variance s^2 .

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Compute with a **dplyr** function:

```
# A tibble: 1 \times 1
  var bikes
       <dbl>
        454.
1
```

summarize(july 2019, var bikes = var(Total))

- Want a statistic that captures how much observations deviate from the mean
- Find how much each observation deviates from the mean.
- Compute the (nearly) average of the squared deviations.
- Called sample variance s^2 .
- The square root of the sample variance is called the sample standard deviation s.

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Compute with a dplyr function:

	1 2	su	mmar	iz	e	(jı so	uly d_b	y_2 oik	01 es
#	A va	ti r	bble: bikes	5	1 sc	× ł ł	2 Dik	ces	
			<dbl></dbl>	>		_	<dł< th=""><th>>1></th><th></th></dł<>	>1>	
1			454.	•			21	.3	

9, var bikes = var(Total), = sd(Total))

• In addition to the sample standard deviation and the sample variance, there is the sample interquartile range (IQR):

$$IQR = Q_3 - Q_1$$

Compute with a dplyr function:

	1	S	umm	ari	ze	(j	uly	/	20
#	А	t	ibb	le:	1	×	1		
	iq	qr_	_bil	kes					
			<dl< td=""><td>ol></td><td></td><td></td><td></td><td></td><td></td></dl<>	ol>					
1				16					

)19, iqr_bikes = IQR(Total))

Comparing Measures of Variability

- Which is more robust to outliers, the IQR or *s*?
- Which is more commonly used, the IQR or *s*?

	1	july	_201	.9	응>	> %				
	2	gro	oup_	b	/ (C)C(cas	ion) 💖	>%	
	3	summa	ariz	ze ((sc	1_I	oik	es = s	d (Tot	tal),
	4				iç	lr_	_bi	kes =	IQR(<code>Fotal))</code>
#	A	tibbl	Le:	2	×	3				
	00	ccasio	on				sd	bikes	iqr_	bikes
	<c< td=""><td>chr></td><td></td><td></td><td></td><td></td><td></td><td><dbl></dbl></td><td></td><td><dbl></dbl></td></c<>	chr>						<dbl></dbl>		<dbl></dbl>
1	Fc	ourth	of	Ju	ıly	,		8.30		14
2	No	ormal	Thu	irs	da	y		27.2		27.2

22

Summarizing Categorical Variables

Return to the Cambridge Dogs

Focus on the dogs with the 5 most common names

```
1 dogs <- read_csv("https://data.cambridgema.gov/api/views/sckh-3xyx/rows.csv")
2
3 # Useful wrangling that we will come back to
4 dogs_top5 <- dogs %>%
5 mutate(Breed = case_when(
6 Dog_Breed == "Mixed Breed" ~ "Mixed",
7 Dog_Breed != "Mixed Breed" ~ "Single")) %>%
8 filter(Dog_Name %in% c("Luna", "Charlie", "Lucy", "Cooper", "Rosie" ))
```

Frequency Table

1 count(d	ogs_top5, Dog_Name)	1	ggplot(data
# A tibble:	5 × 2	2	mapping
Dog_Name	n	3	geom_bar()
<chr></chr>	<int></int>		
1 Charlie	35		40-
2 Cooper	23		
3 Lucy	25		
4 Luna	41		30-
5 Rosie	22		50

Frequency Table

<pre>1 count(dogs_top5, Dog_Name)</pre>	<pre>1 count(dogs_top5, I</pre>
# A tibble: 5 × 2	# A tibble: 5 × 2
Dog_Name n	Dog_Name n
<chr> <int></int></chr>	<chr> <int></int></chr>
1 Charlie 35	1 Luna 41
2 Cooper 23	2 Charlie 35
3 Lucy 25	3 Lucy 25
4 Luna 41	4 Cooper 23
5 Rosie 22	5 Rosie 22

5 Rosie 22

Dog_Name, sort = TRUE)

Another ggplot2 geom: geom_col()

If you have already aggregated the data, you will use geom_col() instead of geom_bar().

Another ggplot2 geom: geom_col()

And use fct_reorder() instead of fct_infreq() to reorder bars.

Contingency Table

	1	count(de	ogs_top!	5, Dog_	_Name,	Breed)
#	Α	tibble:	10 × 3			
	Ι	Dog_Name	Breed	n		
	<	<chr></chr>	<chr></chr>	<int></int>		
1	LC	Charlie	Mixed	12		
2	2 (Charlie	Single	23		
3	3 (Cooper	Mixed	9		
4	1 (Cooper	Single	14		
5	5 I	Lucy	Mixed	10		
6	5 I	Lucy	Single	15		
7	7 I	Luna	Mixed	16		
8	3 I	Luna	Single	25		
9) F	Rosie	Mixed	6		
1() F	Rosie	Single	16		

Conditional Proportions

- Beyond raw counts, we often summarize categorical data with conditional proportions.
 - Especially when looking for relationships!

Conditional Proportions

]	count(de	ogs_top	5, Dog_Name,	Breed)
# .	A tibble:	10 × 3		
	Dog_Name	Breed	n	
	<chr></chr>	<chr></chr>	<int></int>	
1	Charlie	Mixed	12	
2	Charlie	Single	23	
3	Cooper	Mixed	9	
4	Cooper	Single	14	
5	Lucy	Mixed	10	
6	Lucy	Single	15	
7	Luna	Mixed	16	
8	Luna	Single	25	
9	Rosie	Mixed	6	
10	Rosie	Single	16	

	1 count(de 2 group 3 mutate	ogs_top5, Do _by(Dog_Name e(prop = n/s
#	A tibble:	10×4
#	Groups:	Dog_Name [5
	Dog_Name	Breed
	<chr></chr>	<chr> <int< td=""></int<></chr>
1	Charlie	Mixed 1
2	Charlie	Single 2
3	Cooper	Mixed
4	Cooper	Single 1
5	Lucy	Mixed 1
6	Lucy	Single 1
7	Luna	Mixed 1
8	Luna	Single 2
9	Rosie	Mixed
10	Rosie	Single 1

• The dplyr function mutate() adds new column(s) to your data frame.

```
og Name, Breed) %>%
e) %>%
sum(n))
```

```
5]
n prop
t> <dbl>
12 0.343
23 0.657
9 0.391
L4 0.609
10 0.4
15 0.6
16 0.390
25 0.610
6 0.273
16 0.727
```

Conditional Proportions

1	<pre>1 count(dogs_top5, Dog_Name, Breed) %>% 2 group_by(Dog_Name) %>% 3 mutate(prop = n/sum(n))</pre>				<pre>1 count(dogs_top5, 2 group_by(Breed) 3 mutate(prop = n</pre>				
# 1	A tibble:	10×4				# 1	A tibble:	10×4	
# (Groups:	Dog_Nam	ne [5]			# (Groups:	Breed	[2]
	Dog_Name	Breed	n	prop			Dog_Name	Breed	
	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>			<chr></chr>	<chr></chr>	<in<sup>.</in<sup>
1	Charlie	Mixed	12	0.343		1	Charlie	Mixed	
2	Charlie	Single	23	0.657		2	Charlie	Single	
3	Cooper	Mixed	9	0.391		3	Cooper	Mixed	
4	Cooper	Single	14	0.609		4	Cooper	Single	
5	Lucy	Mixed	10	0.4		5	Lucy	Mixed	
6	Lucy	Single	15	0.6		6	Lucy	Single	
7	Luna	Mixed	16	0.390		7	Luna	Mixed	
8	Luna	Single	25	0.610		8	Luna	Single	
9	Rosie	Mixed	6	0.273		9	Rosie	Mixed	
10	Rosie	Single	16	0.727		10	Rosie	Single	

How does the interpretation change based on which variable you condition on?

```
Dog Name, Breed) %>%
응>응
sum(n))
```

```
n prop
t> <dbl>
12 0.226
23 0.247
 9 0.170
14 0.151
10 0.189
15 0.161
16 0.302
25 0.269
 6 0.113
16 0.172
```


Data Wrangling: Transformations done on the data

Why wrangle the data?

To summarize the data.

To drop missing values. (Need to be careful here!)

To filter to a particular subset of the data.

To collapse the categories of a categorical variable.

→ To compute the mean and standard deviation of the bike counts.

→ On our P-Set 2, we will see that ggplot2 will often drop observations before creating a graph.

→ To subset the bike counts data to 2 days in July of 2019.

→ To go from 86 dog breeds to just mixed or single breed.

Data Wrangling: Transformations done on the data

Why wrangle the data?

To arrange the data to make it easier to display.

To fix how R stores a variable.

 \rightarrow To join data frames when information about your cases is stored in multiple places!

 \rightarrow To sort from most common dog name to least common.

 \rightarrow For the bike data, I converted Day from a character variable/vector to a date variable/vector.

Will see examples of this next class!

dplyr for Data Wrangling

- Seven common wrangling verbs:
 - summarize()
 - count()
 - mutate()
 - select()
 - filter()
 - arrange()
 - ---_join()
- One action:
 - group_by()

Return to mutate()

Add new variables

-	_	_		-	
1	count (dogs	± 005	Dog Name	Breed)	8>8
-			Dog_name,	Dreed	0- 1

- group_by(Dog_Name) %>% 2
- mutate(prop = n/sum(n)) 3
- # A tibble: 10×4

# (Groups:	Dog_Name	[5]	
	Dog_Name	Breed	n	prop
	<chr></chr>	<chr> <</chr>	int>	<dbl></dbl>
1	Charlie	Mixed	12	0.343
2	Charlie	Single	23	0.657
3	Cooper	Mixed	9	0.391
4	Cooper	Single	14	0.609
5	Lucy	Mixed	10	0.4
6	Lucy	Single	15	0.6
7	Luna	Mixed	16	0.390
8	Luna	Single	25	0.610
9	Rosie	Mixed	6	0.273
10	Rosie	Single	16	0.727

Modify existing variables

1 class(july_2019\$DateTime)

[1] "character"

- july_2019 <- july_2019 %>% 1
- 2
- 3 class(july_2019\$DateTime)

[1] "POSIXct" "POSIXt"

mutate(DateTime = mdy_hms(DateTime))

select(): Extract variables

1 dogs %>%

2 select(Dog_Name, Dog_Breed)

A tibble: 3,942 × 2

Dog_Nan	ne	Dog_Bre	eed	
<chr></chr>		<chr></chr>		
Butch		Mixed H	Breed	
Baxter		Mixed H	Breed	
Bodhi		Golden	Retriever	
Ocean		Pug		
Coco		Pug		
Brio		LABRADO	OODLE	
Jolene	Almeida	German	Shorthaired	Pointer
Ruger		Labrado	or Retriever	
FLASH		Border	Collie	
Leo		French	Bulldog	
i 3,932	more rov	NS		
	Dog_Nam <chr> Butch Baxter Bodhi Ocean Coco Brio Jolene Ruger FLASH Leo i 3,932</chr>	Dog_Name <chr> Butch Baxter Bodhi Ocean Coco Brio Jolene Almeida Ruger FLASH Leo i 3,932 more rov</chr>	Dog_NameDog_Bre <chr><chr><chr>ButchMixed HBaxterMixed HBodhiGoldenOceanPugCocoPugBrioLABRADOJolene AlmeidaGermanRugerLabradoFLASHBorderLeoFrench3,932more rows</chr></chr></chr>	Dog_NameDog_Breed <chr><chr>ButchMixed BreedBaxterMixed BreedBodhiGolden RetrieverOceanPugCocoPugBrioLABRADOODLEJolene AlmeidaGerman ShorthairedRugerLabrador RetrieverFLASHBorder CollieLeoFrench Bulldogi 3,932 more rows</chr></chr>

39

Motivation for filter()

1 count(dogs	s, Dog_Name,	<pre>sort = TRUE)</pre>
# A tibble: 2,	332 × 2	
Dog_Name	n	
<chr> <i< td=""><td>.nt></td><td></td></i<></chr>	.nt>	
1 Luna	41	
2 Charlie	35	
3 Lucy	25	
4 Cooper	23	
5 Rosie	22	
6 Olive	21	
7 Pepper	20	
8 Teddy	19	
9 Coco	18	
10 Lola	17	
# i 2,322 more	e rows	

40

filter(): Extract cases

```
dogs_top5 <- dogs %>%
 1
      filter(Dog_Name %in% c("Luna", "Charlie", "Lucy", "Cooper", "Rosie"))
 2
 3
 4 count(dogs_top5, Dog_Name, sort = TRUE)
# A tibble: 5 \times 2
  Dog_Name
               n
  <chr>
           <int>
1 Luna
              41
2 Charlie
              35
              25
3 Lucy
              23
4 Cooper
5 Rosie
              22
```

arrange(): Sort the cases

```
1 count(dogs_top5, Dog_Name) %>%
    arrange(n)
2
```

- # A tibble: 5×2
- Dog Name n
- <chr> <int>
- 1 Rosie 22
- 23 2 Cooper
- 3 Lucy 25
- 4 Charlie
- 5 Luna

```
1 count(dogs_top5, Dog_Name) %>%
  arrange(desc(n))
2
```

35

41

```
# A tibble: 5 \times 2
 Dog Name n
  cohr
```

<cnr></cnr>	<1nt>
Luna	41
Charlie	35
Lucy	25
	<cnr> Luna Charlie Lucy</cnr>

- 4 Cooper 23
- 5 Rosie 22

- 1 count(dogs_top5, Dog_Name) %>% arrange(Dog_Name) 2
- # A tibble: 5×2 Dog Name n <chr> <int> 1 Charlie 35 23 2 Cooper 25 3 Lucy
- 4 Luna 41
- 22 5 Rosie

Will see more data wrangling next week!

Reminders

• With COVID working its way through campus right now, make sure to check the Sections spreadsheet and the Office hours spreadsheet for updates!