

Multiple Linear Regression

Kelly McConville
Stat 100
Week 7| Fall 2023

Announcements

- Back to a normal schedule.
- Have section \& wrap-ups this week!
- Notes on the midterm.

Goals for Today

- Recap: Simple linear regression model
- Broadening our idea of linear regression
- Regression with a single, categorical explanatory variable
- Regression with multiple explanatory variables

Simple Linear Regression

Consider this model when:

- Response variable (y): quantitative
- Explanatory variable (x) : quantitative
- Have only ONE explanatory variable.
- AND, $f()$ can be approximated by a line:

$$
y=\beta_{o}+\beta_{1} x+\epsilon
$$

Cautions

- Careful to only predict values within the range of x values in the sample.
- Make sure to investigate outliers: observations that fall far from the cloud of points.

Linear Regression

Linear regression is a flexible class of models that allow for:

- Both quantitative and categorical explanatory variables.
- Multiple explanatory variables.
- Curved relationships between the response variable and the explanatory variable.
- BUT the response variable is quantitative.

What About A Categorical Explanatory Variable?

- Response variable (y): quantitative
- Have 1 categorical explanatory variable (x) with two categories.
- Model form:

$$
y=\beta_{o}+\beta_{1} x+\epsilon
$$

- First, need to convert the categories of x to numbers.

Example: Halloween Candy

1 candy <- read_csv("https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power-ranking/candy-data.csv")
2 glimpse(candy)

Rows: 85

Columns: 13
\$ competitorname <chr> "100 Grand", " 3 Musketeers", "One dime", "One quarter...
\$ chocolate
\$ fruity
\$ caramel
\$ peanutyalmondy
\$ nougat <dbl> $1,1,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0, \ldots$ <dbl> $0,0,0,0,1,0,0,0,0,1,0,1,1,1,1,1,1,1, \ldots$ $<\mathrm{dbl}>1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0, \ldots$ $<\mathrm{dbl}>0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0, \ldots$ $<\mathrm{dbl}>0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0, \ldots$
$\$$ crispedricewafer <dbl> $1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, \ldots$
$\$$ hard $<d b l>0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1, \ldots$
$\$$ bar $<d b l>1,1,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0, \ldots$
\$ pluribus <dbl> $0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,1, \ldots$ <dbl> 0.732, $0.604,0.011,0.011,0.906,0.465,0.604,0.31 \ldots$ <dbl> 0.860, 0.511, 0.116, 0.511, 0.511, 0.767, 0.767, 0.51... <dbl> 66.97173, 67.60294, 32.26109, 46.11650, 52.34146, 50....

What might be a good categorical explanatory variable of winpercent?

Exploratory Data Analysis

Before building the model, let's explore and visualize the data!

- What dply r functions should I use to find the mean and sd of winpercent by the categories of chocolate?
- What graph should we use to visualize the winpercent scores by chocolate?

Exploratory Data Analysis

1 \# Summarize
candy \%>\%
group_by(chocolate) \%>\%
summarize(count = n(), mean_win = mean(winpercent), sd_win $=$ sd(winpercent))

```
# A tibble: 2 x 4
```

 chocolate count mean win sd win
 <dbl> <int> < \(\overline{\mathrm{d} b l>}\) <d.dbl>
 | 1 | 0 | 48 | 42.1 | 10.2 |
| :--- | :--- | :--- | :--- | :--- |

2	1	37	60.9	12.8

Exploratory Data Analysis

```
ggplot(candy, aes(x = factor(chocolate),
    y = winpercent,
    fill = factor(chocolate))) +
    geom boxplot() +
        stat_summary(fun = mean
            geom = "point",
            color = "yellow",
            size = 4) +
    guides(fill = "none")
    scale fill manual(values =
                    c("0" = "deeppink",
                            "1" = "chocolate4")) +
    scale_x_discrete(labels = c("No", "Yes"),
                            name =
        "Does the candy contain chocolate?")
```


Fit the Linear Regression Model

Model Form:

$$
y=\beta_{o}+\beta_{1} x+\epsilon
$$

When $x=0$:

When $x=1$:
1 mod <- lm(winpercent ~ chocolate, data = candy)
2 library(moderndive)
3 get_regression_table(mod)
\# A tibble: $2 \times$

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
<chr>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>
intercept	42.1	1.65	25.6	0	38.9	45.4
chocolate	18.8	2.50	7.52	0	13.8	23.7

Notes

- When the explanatory variable is categorical, β_{o} and β_{1} no longer represent the intercept and slope.
- Now β_{o} represents the (population) mean of the response variable when $x=0$.
- And, β_{1} represents the change in the (population) mean response going from $x=0$ to $x=1$.
- Can also do prediction:

```
1 new_candy <- data.frame(chocolate = c(0, 1))
2 predict(mod, newdata = new_candy)
1
```


Turns Out Reese's Miniatures Are Under-Priced...

Multiple Linear Regression

Form of the Model:

$$
y=\beta_{o}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p}+\epsilon
$$

How does extending to more predictors change our process?

- What doesn't change:
- Still use Method of Least Squares to estimate coefficients
- Still use lm () to fit the model and predict () for prediction
- What does change:
- Meaning of the coefficients are more complicated and depend on other variables in the model
- Need to decide which variables to include and how (linear term, squared term...)

Multiple Linear Regression

- We are going to see a few examples of multiple linear regression today and next lecture.
- We will need to return to modeling later in the course to more definitively answer questions about model selection.

Example

Meadowfoam is a plant that grows in the Pacific Northwest and is harvested for its seed oil. In a randomized experiment, researchers at Oregon State University looked at how two light-related factors influenced the number of flowers per meadowfoam plant, the primary measure of productivity for this plant. The two light measures were light intensity (in mmol/ $\mathrm{m}^{2} / \mathrm{sec}$) and the timing of onset of the light (early or late in terms of photo periodic floral induction).

Response variable:

Explanatory variables:

Model Form:

Data Loading and Wrangling

```
1 library(tidyverse)
library(Sleuth3)
data(case0901)
# Recode the timing variable
count(case0901, Time)
Time n
1 1 12
2 2 12
case0901 <- case0901 %>%
mutate(TimeCat = case when(
Time == 1 ~ "Late",
Time == 2 ~ "Early"
))
count(case0901, TimeCat)
TimeCat n
Early 12
    Late 12
```


Visualizing the Data

```
ggplot(case0901,
        aes(x = Intensity,
            y = Flowers,
            color = TimeCat)) +
        geom_point(size = 4)
```


Why don't I have to include data = and mapping = in my ggplot () layer?

Building the Linear Regression Model

Full model form:

```
1 modFlowers <- lm(Flowers ~ Intensity + TimeCat, data = case0901)
2
3 library(moderndive)
4 get_regression_table(modFlowers)
\# A tibble: \(3 \times 7\)
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
\(\begin{array}{lllllll}1 & \text { intercept } & 83.5 & 3.27 & 25.5 & 0 & 76.7\end{array}\)
2 Intensity \(\quad-0.04 \quad 0.005 \quad-7.89 \quad 0 \quad-0.051 \quad-0.03\)
3 TimeCat: Late -12.2 2.63 -4.62 0 -17.6 -6.69
```

- Estimated regression line for $x_{2}=1$:
- Estimated regression line for $x_{2}=0$:

Appropriateness of Model Form

```
ggplot(case0901,
        aes(x = Intensity
            y = Flowers,
            color = TimeCat)) +
        geom_point(size = 4) +
        geom_smooth(method = "lm", se = FALSE)
```


Is the assumption of equal slopes reasonable here?

Prediction

1 flowersNew <- data.frame(Intensity = c(700, 700), TimeCat = c("Early", "Late"))
2 flowersNew
Intensity TimeCat
1700 Early
2700 Late
1 predict(modFlowers, newdata = flowersNew)
$\begin{array}{rrr}1 & 2 \\ 55.13417 & 42.97583\end{array}$

New Example

For this example, we will use data collected by the website pollster.com, which aggregated 102 presidential polls from August 29th, 2008 through the end of September. We want to determine the best model to explain the variable Margin, measured by the difference in preference between Barack Obama and John McCain. Our potential predictors are Days (the number of days after the Democratic Convention) and Charlie (indicator variable on whether poll was conducted before or after the first ABC interview of Sarah Palin with Charlie Gibson).

```
library(Stat2Data)
data("Pollster08")
glimpse(Pollster08)
```


Rows: 102

Columns: 11
\$ PollTaker <fct> Rasmussen, Zogby, Diageo/Hotline, CBS, CNN, Rasmussen, ARG, ..
\$ PollDates <fct> 8/28-30/08, 8/29-30/08, 8/29-31/08, 8/29-31/08, 8/29-31/08, ...
$\$$ MidDate <fct> 8/29, 8/30, 8/30, 8/30, 8/30, 8/31, 8/31, 9/1, 9/2, 9/2, 9/2...
\$ Days <int> 1, 2, 2, 2, 2, 3, 3, 4, 5, 5, 5, 5, 6, 6, 8, 8, 9, 9, 9, 9, ...
\$ n <int> 3000, 2020, 805, 781, 927, 3000, 1200, 1728, 2771, 1000, 734...
\$ Pop <fct> LV, LV, RV, RV, RV, LV, LV, RV, RV, A, RV, LV, LV, RV, RV, R...
\$ McCain <int> 46, 47, 39, 40, 48, 45, 43, 36, 42, 39, 42, 44, 46, 40, 48, ...
\$ Obama <int> 49, 45, 48, 48, 49, 51, 49, 40, 49, 42, 42, 49, 48, 46, 45, ...
\$ Margin <int> 3, -2, 9, 8, 1, 6, 6, 4, 7, 3, 0, 5, 2, 6, $-3,5,-4,-1,-2 \ldots$
\$ Charlie
\$ Meltdown

Response variable:

Explanatory variables:

Visualizing the Data

```
ggplot(Pollster08,
    aes(x = Days,
        y = Margin,
        color = Charlie)) +
    geom_point(size = 3)
```


What is wrong with how one of the variables is mapped in the graph?

Visualizing the Data

```
ggplot(Pollster08,
    aes(x = Days,
        y = Margin,
        color = factor(Charlie))) +
    geom_point(size = 3)
```


Is the assumption of equal slopes reasonable here?

Model Forms

Same Slopes Model:

Different Slopes Model:

- Line for $x_{2}=1$:
- Line for $x_{2}=0$:

Fitting the Linear Regression Model

```
    modPoll <- lm(Margin ~ Days*factor(Charlie), data = Pollster08)
3 \text { get_regression_table(modPoll)}
# A tibble: 4 x 7
    term estimate std_error statistic p_value lower_ci upper_ci
    <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 5.57 1.09 5.011 0 0.40
2 Days -0.598 0.121 -4.96 0.0.0.0.838
3 factor(Charlie): 1 -10.1 1.92 -5.25 0 -13.9 -6.29
4 Days:factor(Charlie)1 0.921 0.136 
```

- Estimated regression line for $x_{2}=1$:
- Estimated regression line for $x_{2}=0$:

Adding the Regression Model to the Plot

```
ggplot(Pollster08,
        aes(x = Days
            y = Margin,
            color = factor(Charlie))) +
    geom_point(size = 3) +
    stat_smooth(method = lm, se = FALSE)
```


Is our modeling goal here predictive or descriptive?

