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Announcements

Goals for Today

Lecture Quizzes

Last one this week.

Plus Extra Credit Lecture Quiz: Due Tues, Dec 5th at 5pm

Last section this week!

Receive the last p-set.

The material from next Monday’s lecture may appear on the �nal and so we have included
relevant practice problems on the review sheet.

Recap multiple linear regression

Check assumptions for linear regression
inference

Hypothesis testing for linear regression

Estimation and prediction inference for
linear regression
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If you are able to attend, please RSVP: bit.ly/ggpartyf23
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https://bit.ly/ggpartyf23


What does statistical inference
(estimation and hypothesis

testing) look like when I have
more than 0 or 1 explanatory

variables?
One route: Multiple Linear Regression!
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Multiple Linear Regression
Linear regression is a �exible class of models that allow for:

Both quantitative and categorical explanatory variables.

Multiple explanatory variables.

Curved relationships between the response variable and the explanatory variable.

BUT the response variable is quantitative.

In this week’s p-set you will explore the importance of controlling for key explanatory
variables when making inferences about relationships.

6



Multiple Linear Regression
Form of the Model:

Fitted Model: Using the Method of Least Squares,

y = βo + β1x1 + β2x2 + ⋯ + βpxp + ϵ

ŷ = β̂o + β̂1x1 + β̂2x2 + ⋯ + β̂pxp
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Typical Inferential Questions – Hypothesis Testing
Should  be in the model that already contains  and ? Also often asked as “Controlling
for  and , is there evidence that  has a relationship with ?”

In other words, should ?

x2 x1 x3

x1 x3 x2 y

y = βo + β1x1 + β2x2 + β3x3 + ϵ

β2 = 0
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Typical Inferential Questions – Estimation
After controlling for the other explanatory variables, what is the range of plausible values
for  (which summarizes the relationship between  and )?β3 y x3

y = βo + β1x1 + β2x2 + β3x3 + ϵ
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Typical Inferential Questions – Prediction
While  is a point estimate for , can we also get an interval estimate for ? In other words,
can we get a range of plausible predictions for ?

ŷ y y
y

y = βo + β1x1 + β2x2 + β3x3 + ϵ

To answer these questions, we need to add some assumptions to our linear regression
model.
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Multiple Linear Regression
Form of the Model:

Additional Assumptions:

 = typical deviations from the model

y = βo + β1x1 + β2x2 + ⋯ + βpxp + ϵ

ϵ
ind
∼ N(μ = 0,σ = σϵ)

σϵ

Let’s unpack these assumptions!
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Assumptions – Independence
For ease of visualization, let’s assume a simple linear regression model:

Assumption: The cases are independent of each other.

Question: How do we check this assumption?

y = βo + β1x1 + ϵ  where  ϵ
ind
∼ N (0,σϵ)

Consider how the data were collected.

12



Assumptions – Normality

Assumption: The errors are normally distributed.

Question: How do we check this assumption? Recall the residual: 

y = βo + β1x1 + ϵ  where  ϵ
ind
∼ N (0,σϵ)

e = y − ŷ

QQ-plot: Plot the residuals against the quantiles of a normal distribution!
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Assumptions – Mean of Errors

Assumption: The points will, on average, fall on the line.

Question: How do we check this assumption?

y = βo + β1x1 + ϵ  where  ϵ
ind
∼ N (0,σϵ)

If you use the Method of Least Squares, then you don’t have to check.

It will be true by construction:

∑ e = 0
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Assumptions – Constant Variance

Assumption: The variability in the errors is constant.

Question: How do we check this assumption?

y = βo + β1x1 + ϵ  where  ϵ
ind
∼ N (0,σϵ)

One option: Scatterplot
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Assumptions – Constant Variance

Assumption: The variability in the errors is constant.

Question: How do we check this assumption?

Better option (especially when have more than 1 explanatory variable): Residual Plot

y = βo + β1x1 + ϵ  where  ϵ
ind
∼ N (0,σϵ)
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Assumptions – Model Form

Assumption: The model form is appropriate.

Question: How do we check this assumption?

y = βo + β1x1 + ϵ  where  ϵ
ind
∼ N (0,σϵ)

One option: Scatterplot(s)
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Assumptions – Model Form

Assumption: The model form is appropriate.

Question: How do we check this assumption?

Better option (especially when have more than 1 explanatory variable): Residual Plot

y = βo + β1x1 + ϵ  where  ϵ
ind
∼ N (0,σϵ)
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Assumption Checking
Question: What if the assumptions aren’t all satis�ed?

Try transforming the data and building the model again.

Use a modeling technique beyond linear regression.

Question: What if the assumptions are all (roughly) satis�ed?

Can now start answering your inference questions!
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Let’s now look at an example and
learn how to create qq-plots and

residual plots in R.
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Example: COVID and Candle Ratings
 that made the rounds on Twitter:Kate Petrova created a dataset

https://twitter.com/kate_ptrv/status/1332398768659050496
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COVID and Candle Ratings
She posted all her data and code to GitHub and I did some light wrangling so that we could answer the question:

In other words, do we have evidence that we should allow the slopes to vary?

Do we have evidence that early in the pandemic the association between time and Amazon rating varies by whether or not a
candle is scented and in particular, that scented candles have a steeper decline in ratings over time?

ggplot(data = all,1
       mapping = aes(x = Date,2
                     y = Rating,3
                     color = Type)) +4
  geom_point(alpha = 0.4) +5
  geom_smooth(method = lm) +6
  theme(legend.position = "bottom")7
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COVID and Candle Ratings
Checking assumptions:

Assumption: The cases are independent of each other.

Question: What needs to be true about the candles sampled?
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Assumption Checking in R
The R package we will use to check model assumptions is called gglm and was written by
one of my former Reed students, Grayson White.

First need to �t the model:

library(gglm)1

glimpse(all)1

Rows: 612
Columns: 3
$ Date   <date> 2020-01-20, 2020-01-21, 2020-01-22, 2020-01-23, 2020-01-24, 20…
$ Rating <dbl> 4.500000, 4.500000, 3.909091, 4.857143, 4.461538, 4.800000, 4.4…
$ Type   <chr> "scented", "scented", "scented", "scented", "scented", "scented…

mod <- lm(Rating ~ Date * Type, data = all)1
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qq-plot
Assumption: The errors are normally distributed.

# Normal qq plot1
ggplot(data = mod) +2
  stat_normal_qq()3
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Residual Plot
Assumption: The variability in the errors is constant.

Assumption: The model form is appropriate.
# Residual plot1
ggplot(data = mod) +2
  stat_fitted_resid()3
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Hypothesis Testing
Question: What tests is get_regression_table() conducting?

For the moment, let’s focus on the equal slopes model.

In General:

mod <- lm(Rating ~ Date + Type, data = all)1
get_regression_table(mod)2

# A tibble: 3 × 7
  term            estimate std_error statistic p_value lower_ci upper_ci
  <chr>              <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl>
1 intercept         36.2       6.50       5.58       0   23.5     49.0  
2 Date              -0.002     0         -5.00       0   -0.002   -0.001
3 Type: unscented    0.831     0.063     13.2        0    0.707    0.955

Ho : βj = 0 assuming all other predictors are in the model

Ha : βj ≠ 0 assuming all other predictors are in the model
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Hypothesis Testing
Question: What tests is get_regression_table() conducting?

For our Example:

Row 2:

mod <- lm(Rating ~ Date + Type, data = all)1
get_regression_table(mod)2

# A tibble: 3 × 7
  term            estimate std_error statistic p_value lower_ci upper_ci
  <chr>              <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl>
1 intercept         36.2       6.50       5.58       0   23.5     49.0  
2 Date              -0.002     0         -5.00       0   -0.002   -0.001
3 Type: unscented    0.831     0.063     13.2        0    0.707    0.955

Ho : β1 = 0 given Type is already in the model

Ha : β1 ≠ 0 given Type is already in the model
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Hypothesis Testing
Question: What tests is get_regression_table() conducting?

For our Example:

Row 3:

mod <- lm(Rating ~ Date + Type, data = all)1
get_regression_table(mod)2

# A tibble: 3 × 7
  term            estimate std_error statistic p_value lower_ci upper_ci
  <chr>              <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl>
1 intercept         36.2       6.50       5.58       0   23.5     49.0  
2 Date              -0.002     0         -5.00       0   -0.002   -0.001
3 Type: unscented    0.831     0.063     13.2        0    0.707    0.955

Ho : β2 = 0 given Date is already in the model

Ha : β2 ≠ 0 given Date is already in the model
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Hypothesis Testing
Question: What tests is get_regression_table() conducting?

In General:

Test Statistic: Let  = number of explanatory variables.

when  is true and the model assumptions are met.

Ho : βj = 0 assuming all other predictors are in the model

Ha : βj ≠ 0 assuming all other predictors are in the model

p

t =
β̂j − 0

SE(β̂j)
∼ t(df = n − p)

Ho
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Our Example

Row 3:

Test Statistic:

get_regression_table(mod)1

# A tibble: 3 × 7
  term            estimate std_error statistic p_value lower_ci upper_ci
  <chr>              <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl>
1 intercept         36.2       6.50       5.58       0   23.5     49.0  
2 Date              -0.002     0         -5.00       0   -0.002   -0.001
3 Type: unscented    0.831     0.063     13.2        0    0.707    0.955

Ho : β2 = 0 given Date is already in the model

Ha : β2 ≠ 0 given Date is already in the model

t =
β̂2 − 0

SE(β̂2)
=

0.831 − 0

0.063
= 13.2

with p-value 

There is evidence that including whether or not the candle is scented adds useful information to the linear regression model for
Amazon ratings that already controls for date.

= P(t ≤ −13.2) + P(t ≥ 13.2) ≈ 0.
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Example
Do we have evidence that early in the pandemic the association between time and Amazon
rating varies by whether or not a candle is scented and in particular, that scented candles
have a steeper decline in ratings over time?

ggplot(data = all, mapping = aes(x = as.Date(Date),1
                                 y = Rating,2
                                 color = Type)) +3
  geom_point(alpha = 0.4) +4
  geom_smooth(method = lm)5
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Example
Do we have evidence that early in the pandemic the association between time and Amazon
rating varies by whether or not a candle is scented and in particular, that scented candles
have a steeper decline in ratings over time?

mod <- lm(Rating ~ Date * Type, data = all)1
get_regression_table(mod)2

# A tibble: 4 × 7
  term               estimate std_error statistic p_value lower_ci upper_ci
  <chr>                 <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl>
1 intercept            52.7       9.09       5.80   0       34.9     70.6  
2 Date                 -0.003     0         -5.40   0       -0.004   -0.002
3 Type: unscented     -32.6      12.9       -2.52   0.012  -58.0     -7.24 
4 Date:Typeunscented    0.002     0.001      2.59   0.01     0        0.003
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One More Example – Prices of Houses in Saratoga Springs, NY
Does whether or not a house has central air conditioning relate to its price for houses in
Saratoga Springs?

Potential confounding variables?

library(mosaicData)1
mod1 <- lm(price ~ centralAir, data = SaratogaHouses)2
get_regression_table(mod1)3

# A tibble: 2 × 7
  term           estimate std_error statistic p_value lower_ci upper_ci
  <chr>             <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl>
1 intercept       254904.     3685.      69.2       0  247676.  262132.
2 centralAir: No  -67882.     4634.     -14.6       0  -76971.  -58794.
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One More Example – Prices of Houses in Saratoga Springs, NY
Want to control for many explanatory variables

Notice that you generally don’t include interaction terms for the control variables.

get_regression_table(mod1)1

# A tibble: 2 × 7
  term           estimate std_error statistic p_value lower_ci upper_ci
  <chr>             <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl>
1 intercept       254904.     3685.      69.2       0  247676.  262132.
2 centralAir: No  -67882.     4634.     -14.6       0  -76971.  -58794.

mod2 <- lm(price ~ livingArea + age + bathrooms + centralAir, data = SaratogaHouses)1
get_regression_table(mod2)2

# A tibble: 5 × 7
  term           estimate std_error statistic p_value lower_ci upper_ci
  <chr>             <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl>
1 intercept       26749.    7127.       3.75    0      12770.   40728. 
2 livingArea         91.7      3.80    24.1     0         84.2     99.1
3 age               -15.7     61.0     -0.257   0.797   -135.     104. 
4 bathrooms       20968.    3802.       5.52    0      13511.   28426. 
5 centralAir: No -23819.    3648.      -6.53    0     -30974.  -16665. 
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Now let’s shift our focus to
estimation and prediction!
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Estimation
Typical Inferential Question:

After controlling for the other explanatory variables, what is the range of plausible values
for  (which summarizes the relationship between  and )?βj y xj

Con�dence Interval Formula:

statistic ± ME

β̂j ± t∗SE(β̂j)

get_regression_table(mod2)1

# A tibble: 5 × 7
  term           estimate std_error statistic p_value lower_ci upper_ci
  <chr>             <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl>
1 intercept       26749.    7127.       3.75    0      12770.   40728. 
2 livingArea         91.7      3.80    24.1     0         84.2     99.1
3 age               -15.7     61.0     -0.257   0.797   -135.     104. 
4 bathrooms       20968.    3802.       5.52    0      13511.   28426. 
5 centralAir: No -23819.    3648.      -6.53    0     -30974.  -16665. 
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Prediction
Typical Inferential Question:

While  is a point estimate for , can we also get an interval estimate for ? In other words,
can we get a range of plausible predictions for ?

ŷ y y
y
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Two Types of Predictions
Con�dence Interval for the Mean
Response
→ De�ned at given values of the explanatory
variables

→ Estimates the average response

→ Centered at 

→ Smaller SE

Prediction Interval for an Individual
Response
→ De�ned at given values of the explanatory
variables

→ Predicts the response of a single, new
observation

→ Centered at 

→ Larger SE

ŷ
ŷ
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CI for mean response at a given level of X:
We want to construct a 95% CI for the average price of Saratoga Houses (in 2006!) where
the houses meet the following conditions: 1500 square feet, 20 years old, 2 bathrooms, and
have central air.

house_of_interest <- data.frame(livingArea = 1500, age = 20,1
                                 bathrooms = 2, centralAir = "Yes")2
predict(mod2, house_of_interest, interval = "confidence", level = 0.95)3

       fit      lwr      upr
1 205876.7 199919.1 211834.3

Interpretation: We are 95% con�dent that the average price of 20 year old, 1500 square
feet Saratoga houses with central air and 2 bathrooms is between $199,919 and
$211834.
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PI for a new Y at a given level of X:
Say we want to construct a 95% PI for the price of an individual house that meets the
following conditions: 1500 square feet, 20 years old, 2 bathrooms, and have central air.

Notice: Predicting for a new observation not the mean!
predict(mod2, house_of_interest, interval = "prediction", level = 0.95)1

       fit      lwr      upr
1 205876.7 73884.51 337868.9

Interpretation: For a 20 year old, 1500 square feet Saratoga house with central air and 2
bathrooms, we predict, with 95% con�dence, that the price will be between $73,885 and
$337,869.
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Next Time: Comparing Models
and Chi-Squared Tests!
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Reminders:
Lecture Quizzes

Last one this week.

Plus Extra Credit Lecture Quiz: Due Tues, Dec 5th at 5pm

Last section this week!

Receive the last p-set.

The material from next Monday’s lecture will be on the �nal and so we will include
relevant practice problems on the review sheet.

46




