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Announcements

o |Lecture Quizzes
= Last one this week.

m Plus Extra Credit Lecture Quiz: Due Tues, Dec 5th at 5pm

e | ast section this week!

= Receive the last p-set.

e The material from next Monday’s lecture may appear on the final and so we have included
relevant practice problems on the review sheet.

Goals for Today

e Recap multiple linear regression e Hypothesis testing for linear regression

e Check assumptions for linear regression e Estimation and prediction inference for
inference linear regression



Games Lunch
and and
Prizes! Treats!

tidyverse

ggparty

Location:
SC 316

If you are able to attend, please RSVP: bit.ly/ggpartyf23


https://bit.ly/ggpartyf23

What does statistical inference
(estimation and hypothesis
testing) look like when I have
more than 0 or 1 explanatory
variables?

One route: Multiple Linear Regression!




Multiple Linear Regression

Linear regression is a flexible class of models that allow for:

e Both quantitative and categorical explanatory variables.

e Multiple explanatory variables.

e Curved relationships between the response variable and the explanatory variable.

e BUT the response variable is quantitative.

In this week’s p-set you will explore the importance of controlling for key explanatory
variables when making inferences about relationships.



Multiple Linear Regression
Form of the Model:

y:60+ﬁlw1‘|‘52$2‘|‘""|‘5p33p—|—€

Fitted Model: Using the Method of Least Squares,



Typical Inferential Questions — Hypothesis Testing

Should x5 be in the model that already contains 1 and x3? Also often asked as “Controlling
for £1 and x3, is there evidence that x5 has a relationship with y?”

Yy = Bo + B1x1 + Paxa + B3x3 + €

In other words, should 8y = 07



Typical Inferential Questions — Estimation

After controlling for the other explanatory variables, what is the range of plausible values
for B3 (which summarizes the relationship between y and x3)?

Yy = Bo + B1x1 + Paxa + B3x3 + €



Typical Inferential Questions — Prediction

While 7 is a point estimate for y, can we also get an interval estimate for y? In other words,
can we get a range of plausible predictions for y?

Yy = Bo + B1x1 + Paxa + B3x3 + €

To answer these questions, we need to add some assumptions to our linear regression
model.
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Multiple Linear Regression
Form of the Model:

Yy = Bo+ Brr1+ PBoxa+ -+ - + Bprp + €
Additional Assumptions:

ind
m

N(p=0,0=0)

€

o. = typical deviations from the model

Let’s unpack these assumptions!
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Assumptions — Independence

For ease of visualization, let’'s assume a simple linear regression model:

ind
y=B,+ P1x1+€ where e~ N(0,0)
Assumption: The cases are independent of each other.
Question: How do we check this assumption?

Consider how the data were collected.
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Assumptions — Normality
ind

y=Po+ f1x1+€¢ where e~ N(0,0)

: The errors are normally distributed.

A

: How do we check this assumption? Recall theresidual:e =y — y

Plot the residuals against the quantiles of a normal distribution!




Assumptions — Mean of Errors

y= B, + f1x1+€ where e nd N (0, o¢)

Assumption: The points will, on average, fall on the line.
Question: How do we check this assumption?

If you use the Method of Least Squares, then you don’t have to check.
It will be true by construction:

>e-
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Assumptions — Constant Variance

ind
Vv

Y=o+ P1x1+€ where € N (0, o¢)

Assumption: The variability in the errors is constant.
Question: How do we check this assumption?
One option: Scatterplot
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Assumptions — Constant Variance

ind
Vv

Y=o+ P1x1+€ where € N (0, o¢)

Assumption: The variability in the errors is constant.
Question: How do we check this assumption?

Better option (especially when have more than 1 explanatory variable): Residual Plot



Residuals
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Assumptions — Model Form

y = Bo+ Bix1+ € where

Assumption: The model form is appropriate.
Question: How do we check this assumption?
One option: Scatterplot(s)

30-

e 294 N (0, 00)
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Assumptions — Model Form

ind
y= B+ P1x1+€ where €~ N(0,0)
Assumption: The model form is appropriate.
Question: How do we check this assumption?
Better option (especially when have more than 1 explanatory variable): Residual Plot

Residuals vs Fitted Residuals vs Fitted

5.0 -

2.5 10 -
N
I s -
3 S
B 0.0 S e Ee e B S B R ) e %
T T °

O—=m==m === === == e - - - - 0 --- o e---- -
L ° eo °
-2.5- ® o . @ .. ® %t ot ® ..
4 6 8 10 12 0 10

Fitted values Fitted values

20

18



Assumption Checking
Question: What if the assumptions aren’t all satisfied?

e Try transforming the data and building the model again.
e Use a modeling technique beyond linear regression.
Question: What if the assumptions are all (roughly) satisfied?

e Can now start answering your inference questions!
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Let's now look at an example and
learn how to create qqg-plots and
residual plots 1n R.



Example: COVID and Candle Ratings

Kate Petrova created a dataset that made the rounds on Twitter:


https://twitter.com/kate_ptrv/status/1332398768659050496

Top 3 unscented candles Amazon reviews 2017-2020

5 e e I e B

U? e e ae— - &
44 — L - 1

[e)) I

£ !

s i

() 1

= 1

So !

g) 1

<C 1 N=1,118 | First confirmed case of COVID-19 in the US

i = o 1
04-2017 10-2017 04-2018 10-2018 04-2019 10-2019 04-2020 10-2020
Date
Top 3 scented candles Amazon reviews 2017-2020

- 5 R i e i - e+ +B— - B VR - - Ge 0 SIS EHSLEIERS 6 SIS IE8 S Hq»- - 4 — %

T 4

[e)) |

= !

Fo :

() 1

oy |

© 24

: :
< 1 N=11,404 o I First confirmed case of COVID-19 in the US

1 v - ol ccllil-cc 1
04-2017 10-2017 04-2018 10-2018 04-2019 10-2019 04-2020 10-2020

Date

Top 5 scented candles on Amazon:
Proportion of reviews mentioning lack of scent by month 2020

(/2]
=
Q
>
® 004
©
C
K]
w
2
9002~
o

N = 8,072
0.06 -
0.00 - -.-'-----

January February March April May June July August September October November
Month

22



COVID and Candle Ratings

She posted all her data and code to GitHub and | did some light wrangling so that we could answer the question:

Do we have evidence that early in the pandemic the association between time and Amazon rating varies by whether or not a

candle is scented and in particular, that scented candles have a steeper decline in ratings over time?

QU W X L @ @0 Q@ D@OED OGO RN @@ o@D @

In other words, do we have evidence that we should allow the slopes to vary?

ggplot(data = all,
mapping = aes(x = Date,
y = Rating, > © g é _ K
color = Type)) + %W> ——— S
geom point(alpha = 0.4) + 222 o 5 . -
geom_smooth(method = 1m) + 4- | 4 . - . ce o .
theme(legend.position = "bottom")
(] - © ®
(o2 R
=
..(E 3 e ()
o
2 -
1 -
Apr Jul Oct
Date

Type ~ scented == unscented
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COVID and Candle Ratings

Checking assumptions:
Assumption: The cases are independent of each other.
Question: What needs to be true about the candles sampled?
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Assumption Checking in R

The R package we will use to check model assumptions is called gg Lm and was written by
one of my former Reed students, Grayson White.

library(gglm)

gglm

First need to fit the model:

glimpse(all)
Rows: 612
Columns: 3

S Date <date> 2020-01-20, 2020-01-21, 2020-01-22, 2020-01-23, 2020-01-24, 20..
$ Rating <dbl> 4.500000, 4.500000, 3.909091, 4.857143, 4.461538, 4.800000, 4.4..
S Type <chr> "scented", "scented", "scented", "scented", "scented", "scented..

mod <- lm(Rating ~ Date * Type, data = all)
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qqg-plot

Assumption: The errors are normally distributed.

# Normal gqq plot
ggplot(data = mod) +
stat normal qgqg()

Standardized Residuals

o
1

o
1

Normal Q-Q

0
Theoretical Quantiles
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Residual Plot

Assumption: The variability in the errors is constant.

Assumption: The model form is appropriate.

# Residual plot
ggplot(data = mod) +
stat fitted resid()

Residuals

Residuals vs Fitted
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Hypothesis Testing

Question: What testsisget regression_table() conducting?

For the moment, let’s focus on the equal slopes model.

mod <- lm(Rating ~ Date + Type, data = all)
get regression table(mod)

# A tibble: 3 x 7

term estimate std error statistic p value lower ci upper ci
<chr> <dbl> <dbl> <db1l> <dbl> <dbl> <dbl>
1 intercept 36.2 6.50 5.58 0 23.5 49.0
2 Date -0.002 0 -5.00 0 -0.002 -0.001
3 Type: unscented 0.831 0.063 13.2 0 0.707 0.955
In General:

H,: ;=0 assuming all other predictors are in the model

H,: B; # 0 assuming all other predictors are in the model



Hypothesis Testing

Question: What testsisget regression_table() conducting?

mod <- lm(Rating ~ Date + Type, data = all)
get regression table(mod)

# A tibble: 3 x 7

term estimate std error statistic p value lower ci upper ci
<chr> <dbl> <dbl> <db1l> <dbl> <dbl> <dbl>
1 intercept 36.2 6.50 5.58 0 23.5 49.0
2 Date -0.002 0 -5.00 0 -0.002 -0.001
3 Type: unscented 0.831 0.063 13.2 0 0.707 0.955
For our Example:

Row 2:
H,: 31 =0 given Type is already in the model
H,: 31 #0 given Type is already in the model
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Hypothesis Testing

Question: What testsisget regression_table() conducting?

mod <- lm(Rating ~ Date + Type, data = all)
get regression table(mod)

# A tibble: 3 x 7

term estimate std error statistic p value lower ci upper ci
<chr> <dbl> <dbl> <db1l> <dbl> <dbl> <dbl>
1 intercept 36.2 6.50 5.58 0 23.5 49.0
2 Date -0.002 0 -5.00 0 -0.002 -0.001
3 Type: unscented 0.831 0.063 13.2 0 0.707 0.955
For our Example:

Row 3:
H,: 35 =0 given Date is already in the model
H,: 35 # 0 given Date is already in the model
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Hypothesis Testing

Question: What testsisget regression_table() conducting?
In General:

H,: B; =0 assuming all other predictors are in the model

H,: B; #0 assuming all other predictors are in the model

Test Statistic: Let p = number of explanatory variables.

=52 L ydf=n—p)
SE(B;)

when H , is true and the model assumptions are met.
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Our Example

get regression table(mod)

# A tibble: 3 x 7

term estimate std error statistic p value lower ci upper ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 36.2 6.50 5.58 0 23.5 49.0
2 Date -0.002 0 -5.00 0 -0.002 -0.001
3 Type: unscented 0.831 0.063 13.2 0 0.707 0.955
Row 3:

H,: B, =0 given Date is already in the model
H,: B2 #0 given Date is already in the model

Test Statistic:

3, -0 0.831—0
t = Bz — — 13.2

SE(BQ) 0.063

with p-value = P(t < —13.2) + P(t > 13.2) = 0.

There is evidence that including whether or not the candle is scented adds useful information to the linear regression model for
Amazon ratings that already controls for date.



Example

Do we have evidence that early in the pandemic the association between time and Amazon
rating varies by whether or not a candle is scented and in particular, that scented candles

have a steeper decline in ratings over time?

ggplot(data = all, mapping = aes(x = as.Date(Date),
y = Rating,
color = Type)) +

geom point(alpha = 0.4) +
geom smooth(method = 1m) 4-

Type

scented

Rating
w

=== unscented

Apr Jul Oct
as.Date(Date)
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Example

Do we have evidence that early in the pandemic the association between time and Amazon
rating varies by whether or not a candle is scented and in particular, that scented candles
have a steeper decline in ratings over time?

mod <- lm(Rating ~ Date * Type, data = all)
get regression table(mod)

# A tibble: 4 x 7

term estimate std error statistic p value lower ci upper ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 52.7 9.09 5.80 0 34.9 70.6
2 Date -0.003 0 -5.40 0 -0.004 -0.002
3 Type: unscented -32.6 12.9 -2.52 0.012 -58.0 -7.24
4 Date:Typeunscented 0.002 0.001 2.59 0.01 0 0.003



One More Example — Prices of Houses 1n Saratoga Springs, NY

Does whether or not a house has central air conditioning relate to its price for houses in
Saratoga Springs?

library(mosaicData)
modl <- Im(price ~ centralAir, data = SaratogaHouses)
get regression table(modl)

# A tibble: 2 x 7

term estimate std error statistic p value lower ci upper ci
<chr> <dbl> <dbl> <dbl> <dbl> <db1l> <dbl>
1 intercept 254904. 3685. 69.2 0 247676. 262132.
2 centralAir: No -67882. 4634. -14.6 0 -76971. -58794.

Potential confounding variables?
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One More Example — Prices of Houses 1n Saratoga Springs, NY

e Want to control for many explanatory variables

= Notice that you generally don’t include interaction terms for the control variables.

get regression table(modl)

# A tibble: 2 x 7

term estimate std error statistic p value lower ci upper ci
<chr> <dbl> <dbl> <dbl> <db1l> <dbl> <dbl>
1 intercept 254904. 3685. 69.2 0 247676. 262132.
2 centralAir: No -67882. 4634. -14.6 0 -76971. -=-58794.

mod2 <- Ilm(price ~ livingArea + age + bathrooms + centralAir, data = SaratogaHouses)
get regression table(mod2)

# A tibble: 5 x 7

term estimate std error statistic p value lower ci upper ci

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 26749. 7127. 3.75 0 12770. 40728.
2 livingArea 91.7 3.80 24.1 0 84.2 99.1
3 age -15.7 61.0 -0.257 0.797 -135. 104.
4 bathrooms 20968. 3802. 5.52 0 13511. 28426.
5 centralAir: No -23819. 3648. -6.53 0 -30974. -16665.
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Now let’s shift our focus to
estimation and prediction!



Estimation
Typical Inferential Question:

After controlling for the other explanatory variables, what is the range of plausible values
for 5]- (which summarizes the relationship between y and x;)?

Confidence Interval Formula:

statistic = M FE
ﬂj —+ t*SE(BJ)

get regression table(mod2)

# A tibble: 5 x 7

term estimate std error statistic p value lower ci upper ci

<chr> <dbl> <dbl> <db1l> <dbl> <dbl> <dbl>
1 intercept 26749. 7127. 3.75 0 12770. 40728.
2 livingArea 91.7 3.80 24.1 0 84.2 99.1
3 age -15.7 61.0 -0.257 0.797 -135. 104.
4 bathrooms 20968. 3802. 5.52 0 13511. 28426.
5 centralAir: No -23819. 3648. -6.53 0 -30974. -16665.



Prediction

Typical Inferential Question:

While 7 is a point estimate for y, can we also get an interval estimate for y? In other words,
can we get a range of plausible predictions for y?
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Two Types of Predictions

Confidence Interval for the Mean
Response

— Defined at given values of the explanatory
variables

— Estimates the response

— Centered at y
— SE

Prediction Interval for an Individual
Response

— Defined at given values of the explanatory
variables

— Predicts the response of a new
observation

— Centered at y
— SE
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CI for mean response at a given level of X:

We want to construct a 95% ClI for the average price of Saratoga Houses (in 2006!) where
the houses meet the following conditions: 1500 square feet, 20 years old, 2 bathrooms, and
have central air.

house of interest <- data.frame(livingArea = 1500, age = 20,
bathrooms = 2, centralAir = "Yes")
predict (mod2, house of interest, interval = "confidence", level = 0.95)
fit lwr upr

1 205876.7 199919.1 211834.3

e |nterpretation: We are 95% confident that the average price of 20 year old, 1500 square
feet Saratoga houses with central air and 2 bathrooms is between $199,919 and
$211834.
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PI for a new Y at a given level of X:

Say we want to construct a 95% Pl for the price of an individual house that meets the
following conditions: 1500 square feet, 20 years old, 2 bathrooms, and have central air.

Notice: Predicting for a new observation not the mean!

predict (mod2, house of interest, interval = "prediction", level = 0.95)

fit lwr upr
1 205876.7 73884.51 337868.9

e |nterpretation: For a 20 year old, 1500 square feet Saratoga house with central air and 2
bathrooms, we predict, with 95% confidence, that the price will be between $73,885 and

$337,869.
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Next Time: Comparing Models
and Chi-Squared Tests!



Reminders:

o Lecture Quizzes
= | ast one this week.

s Plus Extra Credit Lecture Quiz: Due Tues, Dec 5th at 5pm

e | ast section this week!

= Receive the last p-set.

e The material from next Monday’s lecture will be on the final and so we will include
relevant practice problems on the review sheet.
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