

Kelly McConville **Stat 100** Week 13 | Fall 2023

Inference for Linear Regression

Announcements

- Lecture Quizzes
 - Last one this week.
 - Plus Extra Credit Lecture Quiz: Due Tues, Dec 5th at 5pm
- Last section this week!
 - Receive the last p-set.
- The material from next Monday's lecture may appear on the final and so we have included relevant practice problems on the review sheet.

Goals for Today

- Recap multiple linear regression
- Check assumptions for linear regression inference
- linear regression

• Hypothesis testing for linear regression • Estimation and prediction inference for

If you are able to attend, please RSVP: bit.ly/ggpartyf23

What does statistical inference (estimation and hypothesis testing) look like when I have more than 0 or 1 explanatory variables? **One route: Multiple Linear Regression!**

Multiple Linear Regression

Linear regression is a flexible class of models that allow for:

- Both quantitative and categorical explanatory variables.
- Multiple explanatory variables.
- Curved relationships between the response variable and the explanatory variable.
- BUT the response variable is quantitative.

In this week's p-set you will explore the importance of controlling for key explanatory variables when making inferences about relationships.

Multiple Linear Regression

Form of the Model:

$$y=eta_o+eta_1x_1+eta_2x_2+\dots+eta_px_p+$$

Fitted Model: Using the Method of Least Squares,

$$\hat{y}=\hat{eta}_o+\hat{eta}_1x_1+\hat{eta}_2x_2+\dots+\hat{eta}_px_p$$

 $\epsilon + \epsilon$

Typical Inferential Questions – Hypothesis Testing

Should x_2 be in the model that already contains x_1 and x_3 ? Also often asked as "Controlling" for x_1 and x_3 , is there evidence that x_2 has a relationship with y?"

$$y=eta_o+eta_1x_1+eta_2x_2+eta_3x_3+\epsilon$$

In other words, should $\beta_2 = 0$?

Typical Inferential Questions – Estimation

After controlling for the other explanatory variables, what is the range of plausible values for β_3 (which summarizes the relationship between y and x_3)?

$$y=eta_o+eta_1x_1+eta_2x_2+eta_3x_3+\epsilon$$

9

Typical Inferential Questions – Prediction

While \hat{y} is a point estimate for y, can we also get an interval estimate for y? In other words, can we get a range of plausible **predictions** for *y*?

$$y=eta_o+eta_1x_1+eta_2x_2+eta_3x_3+\epsilon$$

To answer these questions, we need to add some **assumptions** to our linear regression model.

Multiple Linear Regression

Form of the Model:

$$y=eta_o+eta_1x_1+eta_2x_2+\dots+eta_px_p+$$

Additional Assumptions:

$$\epsilon \stackrel{\mathrm{ind}}{\sim} N(\mu=0,\sigma=\sigma_\epsilon)$$

 σ_{ϵ} = typical deviations from the model Let's unpack these assumptions! $+\epsilon$

Assumptions – Independence

For ease of visualization, let's assume a **simple** linear regression model:

$$y=eta_o+eta_1x_1+\epsilon \quad ext{where}\quad \epsilon\stackrel{ ext{ind}}{\sim} N$$

Assumption: The cases are independent of each other.

- **Question**: How do we check this assumption?
- Consider how the data were collected.

$(0, \sigma_{\epsilon})$

Assumptions – Normality

 $y=eta_{o}+eta_{1}x_{1}+\epsilon \quad ext{where}\quad \epsilon\stackrel{ ext{ind}}{\sim}N\left(0,\sigma_{\epsilon}
ight)$

Assumption: The errors are normally distributed.

Question: How do we check this assumption?

Recall the residual: $e = y - \hat{y}$

QQ-plot: Plot the residuals against the quantiles of a normal distribution!

Assumptions – Mean of Errors

$$y=eta_o+eta_1 x_1+\epsilon \quad ext{where}\quad \epsilon \stackrel{ ext{ind}}{\sim} N$$
 (

Assumption: The points will, on average, fall on the line.

Question: How do we check this assumption?

If you use the Method of Least Squares, then you don't have to check. It will be true by construction:

$$\sum e = 0$$

$(0,\sigma_{\epsilon})$

Assumptions – Constant Variance

 $y = eta_o + eta_1 x_1 + \epsilon \quad ext{where} \quad \epsilon \stackrel{ ext{ind}}{\sim} N\left(0, \sigma_\epsilon
ight)$

Assumption: The variability in the errors is constant. **Question**: How do we check this assumption? **One option:** Scatterplot

Assumptions – Constant Variance

 $y = eta_o + eta_1 x_1 + \epsilon \quad ext{where} \quad \epsilon \stackrel{ ext{ind}}{\sim} N\left(0, \sigma_\epsilon
ight)$

Assumption: The variability in the errors is constant.

Question: How do we check this assumption?

Better option (especially when have more than 1 explanatory variable): **Residual Plot**

Assumptions – Model Form

$$y=eta_o+eta_1x_1+\epsilon \quad ext{where}\quad \epsilon\stackrel{ ext{ind}}{\sim}N$$

Assumption: The model form is appropriate.Question: How do we check this assumption?One option: Scatterplot(s)

$(0,\sigma_\epsilon)$

Assumptions – Model Form

$$y=eta_o+eta_1x_1+\epsilon \quad ext{where}\quad \epsilon\stackrel{ ext{ind}}{\sim}N$$

Assumption: The model form is appropriate.

Question: How do we check this assumption?

Better option (especially when have more than 1 explanatory variable): **Residual Plot**

$(0, \sigma_{\epsilon})$

Assumption Checking

Question: What if the assumptions aren't all satisfied?

- Try transforming the data and building the model again.
- Use a modeling technique beyond linear regression.

Question: What if the assumptions are all (roughly) satisfied?

• Can now start answering your inference questions!

Let's now look at an example and learn how to create qq-plots and residual plots in **R**.

Example: COVID and Candle Ratings

Kate Petrova created a dataset that made the rounds on Twitter:

Top 3 unscented candles Amazon reviews 2017–2020

Top 3 scented candles Amazon reviews 2017–2020

Top 5 scented candles on Amazon: Proportion of reviews mentioning lack of scent by month 2020

COVID and Candle Ratings

She posted all her data and code to GitHub and I did some light wrangling so that we could answer the question:

Do we have evidence that early in the pandemic the association between time and Amazon rating varies by whether or not a candle is scented and in particular, that scented candles have a steeper decline in ratings over time?

In other words, do we have evidence that we should allow the slopes to vary?

COVID and Candle Ratings

Checking assumptions:

Assumption: The cases are independent of each other.

Question: What needs to be true about the candles sampled?

Assumption Checking in R

The R package we will use to check model assumptions is called gglm and was written by one of my former Reed students, Grayson White.


```
1 library(gglm)
```

First need to fit the model:

```
1 glimpse(all)
 Rows: 612
Columns: 3
                                                                         <date> 2020-01-20, 2020-01-21, 2020-01-22, 2020-01-23, 2020-01-24, 20...
 $ Date
 $ Rating <dbl> 4.500000, 4.500000, 3.909091, 4.857143, 4.461538, 4.800000, 4.4...
                                                                           <chr> "scented", "scen
 $ Type
```

```
1 mod <- lm(Rating ~ Date * Type, data = all)
```

qq-plot

Assumption: The errors are normally distributed.

Residual Plot

Assumption: The variability in the errors is constant.

Assumption: The model form is appropriate.

Question: What tests is get_regression_table() conducting?

For the moment, let's focus on the equal slopes model.

```
1 mod <- lm(Rating ~ Date + Type, data = all)
 2 get regression table(mod)
# A tibble: 3 \times 7
                estimate std error statistic p value lower ci upper ci
  term
                  <dbl>
                            <dbl>
                                     <dbl> <dbl>
                                                     <dbl>
  <chr>
                                                              <dbl>
1 intercept 36.2 6.50 5.58 0 23.5
                                                             49.0
2 Date-0.0020-5.000-0.002-0.0013 Type: unscented0.8310.06313.200.7070.955
```

In General:

 $H_o: \beta_i = 0$ assuming all other predictors are in the model $H_a: \beta_i \neq 0$ assuming all other predictors are in the model

Question: What tests is get_regression_table() conducting?

1 mod <- $lm(Rating \sim Date + Type, data = all)$

2 get_regression_table(mod)

A tibble: 3×7

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 intercept	36.2	6.50	5.58	0	23.5	49.0
2 Date	-0.002	0	-5.00	0	-0.002	-0.001
3 Type: unscented	0.831	0.063	13.2	0	0.707	0.955

For our Example:

Row 2:

 $H_o: \beta_1 = 0$ given Type is already in the model

 $H_a: \beta_1 \neq 0$ given Type is already in the model

Question: What tests is get_regression_table() conducting?

1 mod <- $lm(Rating \sim Date + Type, data = all)$

2 get_regression_table(mod)

A tibble: 3×7

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 intercept	36.2	6.50	5.58	0	23.5	49.0
2 Date	-0.002	0	-5.00	0	-0.002	-0.001
3 Type: unscented	0.831	0.063	13.2	0	0.707	0.955

For our Example:

Row 3:

 $H_o: \beta_2 = 0$ given Date is already in the model

 $H_a: \beta_2 \neq 0$ given Date is already in the model

Question: What tests is get_regression_table() conducting? In General:

 $H_o: \beta_i = 0$ assuming all other predictors are in the model

 $H_a: \beta_i \neq 0$ assuming all other predictors are in the model

Test Statistic: Let p = number of explanatory variables.

$$t = rac{\hateta_j - 0}{SE(\hateta_j)} \sim t(df = n - p)$$

when H_o is true and the model assumptions are met.

Our Example

1 get_regression_table(mod)

# A tibble: 3×7						
term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 intercept	36.2	6.50	5.58	0	23.5	49.0
2 Date	-0.002	0	-5.00	0	-0.002	-0.001
3 Type: unscented	0.831	0.063	13.2	0	0.707	0.955

Row 3:

 $H_o: \beta_2 = 0$ given Date is already in the model $H_a: eta_2
eq 0 \quad ext{given Date is already in the model}$

Test Statistic:

$$t = rac{\hat{eta}_2 - 0}{SE(\hat{eta}_2)} = rac{0.831 - 0}{0.063} = 13.2$$

with p-value = $P(t \le -13.2) + P(t \ge 13.2) \approx 0.$

There is evidence that including whether or not the candle is scented adds useful information to the linear regression model for Amazon ratings that already controls for date.

Example

Do we have evidence that early in the pandemic the association between time and Amazon rating varies by whether or not a candle is scented and in particular, that scented candles have a steeper decline in ratings over time?

```
ggplot(data = all, mapping = aes(x = as.Date(Date))
                                    y = Rating,
2
3
                                    color = Type)) +
    geom_point(alpha = 0.4) +
4
```

```
5
    geom_smooth(method = lm)
```


Example

Do we have evidence that early in the pandemic the association between time and Amazon rating varies by whether or not a candle is scented and in particular, that scented candles have a steeper decline in ratings over time?

```
mod <- lm(Rating ~ Date * Type, data = all)
```

```
get_regression_table(mod)
```

```
# A tibble: 4 \times 7
```

	term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	intercept	52.7	9.09	5.80	0	34.9	70.6
2	Date	-0.003	0	-5.40	0	-0.004	-0.002
3	Type: unscented	-32.6	12.9	-2.52	0.012	-58.0	-7.24
4	Date: Typeunscented	0.002	0.001	2.59	0.01	0	0.003

One More Example – Prices of Houses in Saratoga Springs, NY

Does whether or not a house has central air conditioning relate to its price for houses in Saratoga Springs?

```
1 library(mosaicData)
 2 mod1 <- lm(price ~ centralAir, data = SaratogaHouses)</pre>
 3 get regression table(mod1)
# A tibble: 2 \times 7
                 estimate std error statistic p value lower ci upper ci
  term
                    <dbl>
                              <dbl>
                                        <dbl>
                                                <dbl>
                                                         <dbl>
                                                                  <dbl>
  <chr>
                                                    0 247676. 262132.
                              3685.
                                        69.2
1 intercept
                  254904.
2 centralAir: No -67882.
                                                    0 -76971. -58794.
                            4634.
                                        -14.6
```

Potential confounding variables?

toga Springs, NY o its price for houses in

One More Example – Prices of Houses in Saratoga Springs, NY

- Want to control for many explanatory variables
 - Notice that you generally don't include interaction terms for the control variables.

```
1 get regression table(mod1)
# A tibble: 2 \times 7
                 estimate std_error statistic p_value lower_ci upper ci
  term
                                        <dbl>
                                               <dbl>
                    <dbl>
                              <dbl>
                                                          <dbl>
                                                                   <dbl>
  <chr>
                                         69.2
                                                     0 247676. 262132.
1 intercept
                  254904.
                              3685.
2 centralAir: No -67882.
                                        -14.6
                                                     0 -76971. -58794.
                              4634.
 1 mod2 <- lm(price ~ livingArea + age + bathrooms + centralAir, data = SaratogaHouses)</pre>
 2 get regression table(mod2)
# A tibble: 5 \times 7
                 estimate std error statistic p value lower ci upper ci
  term
                    <dbl>
                              <dbl>
                                        <dbl>
                                                <dbl>
                                                          <dbl>
                                                                   <dbl>
  <chr>
                  26749.
                            7127.
                                        3.75
                                                        12770.
                                                                 40728.
1 intercept
                                                 0
                                                           84.2
2 livingArea
                     91.7
                               3.80
                                       24.1
                                                                    99.1
                                                 0
                    -15.7
                              61.0
                                       -0.257
3 age
                                               0.797 - 135.
                                                                   104.
                            3802.
                                        5.52
                                                        13511.
                                                                 28426.
4 bathrooms
                  20968.
                                                 0
                            3648.
                                       -6.53
                                                       -30974. -16665.
5 centralAir: No -23819.
                                                0
```

Now let's shift our focus to estimation and prediction!

Estimation

Typical Inferential Question:

After controlling for the other explanatory variables, what is the range of plausible values for β_i (which summarizes the relationship between y and x_j)?

Confidence Interval Formula:

statistic $\pm ME$ $\hat{\beta}_{j} \pm t^{*}SE(\hat{\beta}_{j})$

	<pre>1 get_regression_table(mod2)</pre>							
#	# A tibble: 5 × 7							
	term	estimate	std_error	statistic	p_value	lower_ci	upper_ci	
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	intercept	26749.	7127.	3.75	0	12770.	40728.	
2	livingArea	91.7	3.80	24.1	0	84.2	99.1	
3	age	-15.7	61.0	-0.257	0.797	-135.	104.	
4	bathrooms	20968.	3802.	5.52	0	13511.	28426.	
5	centralAir: 1	No -23819.	3648.	-6.53	0	-30974.	-16665.	

Prediction

Typical Inferential Question:

While \hat{y} is a point estimate for y, can we also get an interval estimate for y? In other words, can we get a range of plausible **predictions** for *y*?

Two Types of Predictions

Confidence Interval for the Mean Response

- \rightarrow Defined at given values of the explanatory variables
- \rightarrow Estimates the average response
- \rightarrow Centered at \hat{y}
- \rightarrow Smaller SE

- Response
- variables
- observation
- \rightarrow Centered at \hat{y}
- \rightarrow Larger SE

Prediction Interval for an Individual

\rightarrow Defined at given values of the explanatory

 \rightarrow Predicts the response of a single, new

CI for mean response at a given level of X:

We want to construct a 95% CI for the average price of Saratoga Houses (in 2006!) where the houses meet the following conditions: 1500 square feet, 20 years old, 2 bathrooms, and have central air.

```
house of interest <- data.frame(livingArea = 1500, age = 20,
2
                                   bathrooms = 2, centralAir = "Yes")
 predict(mod2, house of interest, interval = "confidence", level = 0.95)
```

fit lwr upr 1 205876.7 199919.1 211834.3

• Interpretation: We are 95% confident that the average price of 20 year old, 1500 square feet Saratoga houses with central air and 2 bathrooms is between \$199,919 and \$211834.

PI for a new Y at a given level of X:

Say we want to construct a 95% PI for the price of an individual house that meets the following conditions: 1500 square feet, 20 years old, 2 bathrooms, and have central air.

Notice: Predicting for a new observation not the mean!

```
1 predict(mod2, house of interest, interval = "prediction", level = 0.95)
```

fit lwr upr 1 205876.7 73884.51 337868.9

• Interpretation: For a 20 year old, 1500 square feet Saratoga house with central air and 2 bathrooms, we predict, with 95% confidence, that the price will be between \$73,885 and \$337,869.

Next Time: Comparing Models and Chi-Squared Tests!

Reminders:

- Lecture Quizzes
 - Last one this week.
 - Plus Extra Credit Lecture Quiz: Due Tues, Dec 5th at 5pm
- Last section this week!
 - Receive the last p-set.
- The material from next Monday's lecture will be on the final and so we will include relevant practice problems on the review sheet.