

Chi-Squared Tests

Kelly McConville **Stat 100** Week 14 | Fall 2023

Announcements

- Make sure to sign up for an oral exam
- Due Tues, Dec 5th at 5pm:
 - Extra Credit Lecture Quiz
 - P-Set 9
- RSVP for the ggparty by end of today: bit.ly/ggpartyf23

Goals for Today

- Comparing models
- What didn't we cover?

- Chi-squared tests
- Wrap-up

Multiple Linear Regression

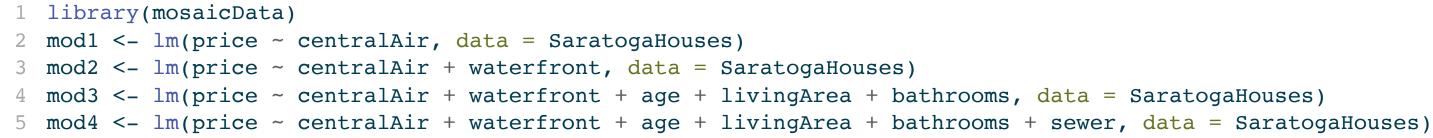
Linear regression is a flexible class of models that allow for:

- Both quantitative and categorical explanatory variables.
- Multiple explanatory variables.
- Curved relationships between the response variable and the explanatory variable.
- BUT the response variable is quantitative.

How do I pick the **BEST** model?

Comparing Models

Suppose I built 4 different models to predict the price of a Saratoga Springs house. Which is best?



- Big question! Take Stat 139: Linear Models to learn systematic model selection techniques.
- We will explore one approach. (But there are many possible approaches!)

Comparing Models

Suppose I built 4 different model. Which is best?

• Pick the best model based on some measure of quality.

Measure of quality: R^2 (Coefficient of Determination)

 $R^2 =$ Percent of total variation in y explained by the model $= 1 - rac{\sum (y - \hat{y})^2}{\sum (y - \bar{y})^2}$

Strategy: Compute the R^2 value for each model and pick the one with the highest R^2 .

Comparing Models with R^2

Strategy: Compute the R^2 value for each model and pick the one with the highest R^2 .

```
1 library(mosaicData)
2 mod1 <- lm(price ~ centralAir, data = SaratogaHouses)</pre>
3 mod2 <- lm(price ~ centralAir + waterfront, data = SaratogaHouses)
4 mod3 <- lm(price ~ centralAir + waterfront + age + livingArea + bathrooms, data = SaratogaHouses)
5 mod4 <- lm(price ~ centralAir + waterfront + age + livingArea + bathrooms + sewer, data = SaratogaHouses)
```

Strategy: Compute the R^2 value for each model and pick the one with the highest R^2 .

1 library(broom) 2 glance(mod1) # A tibble: 1 × 12 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 0.111 0.110 92866. 215. 6.83e-46 1 -22217. 44441. 44457. 1 # i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int> 1 glance(mod2) # A tibble: 1 × 12 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 2 -22192. 44392. 44414. 0.136 0.135 91536. 136. 1.20e-55 1 # i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int> 1 glance(mod3) # A tibble: 1×12 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 0.559 65402. 438. 1.02e-303 5 -21610. 43233. 43271. 0.560 1 # i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int> 1 glance(mod4) # A tibble: 1×12 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 0.558 65419. 313. 2.62e-301 7 -21609. 43236. 43285. 0.560 1 # i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Problem: As we add predictors, the R^2 value will only increase.

Comparing Models with R^2

Problem: As we add predictors, the R^2 value will only increase. And in Week 6, we said:

Guiding Principle: Occam's Razor for Modeling

"All other things being equal, simpler models are to be preferred over complex ones." – ModernDive

Comparing Models with the Adjusted R^2

New Measure of quality: Adjusted R^2 (Coefficient of Determination)

$${
m adj} R^2 = 1 - rac{\sum (y - \hat{y})^2}{\sum (y - \bar{y})^2} \left(rac{n - 1}{n - p - 1}
ight)$$

where p is the number of explanatory variables in the model.

- Now we will penalize larger models.
- Strategy: Compute the adjusted R^2 value for each model and pick the one with the highest adjusted R^2 .

Strategy: Compute the adjusted R^2 value for each model and pick the one with the highest adjusted R^2 .

```
1 glance(mod1)
# A tibble: 1 \times 12
  r.squared adj.r.squared sigma statistic p.value
                                                      df logLik
                                                                    AIC
                                                                            BIC
                   <dbl> <dbl>
                                    <dbl>
                                             <dbl> <dbl>
      <dbl>
                                                           <dbl> <dbl> <dbl>
      0.111
                    0.110 92866.
                                      215. 6.83e-46
                                                       1 -22217. 44441. 44457.
1
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
 1 glance(mod2)
# A tibble: 1 \times 12
  r.squared adj.r.squared sigma statistic p.value
                                                      df logLik
                                                                    AIC
                                                                            BIC
                   <dbl> <dbl>
                                                           <dbl> <dbl> <dbl>
                                    <dbl>
                                             <dbl> <dbl>
      <dbl>
                                  136. 1.20e-55
      0.136
                    0.135 91536.
                                                       2 -22192. 44392. 44414.
1
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
 1 glance(mod3)
# A tibble: 1 × 12
  r.squared adj.r.squared sigma statistic p.value
                                                       df logLik
                                                                     AIC
                                                                             BIC
      <dbl>
                    <dbl> <dbl>
                                    <dbl>
                                               <dbl> <dbl>
                                                            <dbl> <dbl> <dbl>
                                                        5 -21610. 43233. 43271.
                   0.559 65402.
                                  438. 1.02e-303
      0.560
1
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
 1 glance(mod4)
# A tibble: 1 \times 12
  r.squared adj.r.squared sigma statistic
                                           p.value
                                                       df logLik
                                                                     AIC
                                                                             BIC
      <dbl>
                   <dbl> <dbl>
                                     <dbl>
                                               <dbl> <dbl>
                                                            <dbl> <dbl> <dbl>
      0.560
                   0.558 65419.
                                     313. 2.62e-301
                                                        7 -21609. 43236. 43285.
1
```

```
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

4	0
T	U

What data structures have we not tackled in Stat 100?

What Else?

Which data structures/variable types are we missing in this table?

which data structures/variable types are we missing in this table:					
Response	Explanatory	Numerical_Quantity	Parameter	Statistic	
quantitative	-	mean	μ	$ar{x}$	
categorical	-	proportion	p	\hat{p}	
quantitative	categorical	difference in means	$\mu_1-\mu_2$	$ar{x}_1 - ar{x}_2$	
categorical	categorical	difference in proportions	p_1-p_2	$\hat{p}_1-\hat{p}_2$	
quantitative	quantitative	correlation	ρ	r	
quantitative	mix	model coefficients	eta_i s	\hat{eta}_i s	

Inference for Categorical Variables

Consider the situation where:

- Response variable: categorical
- Explanatory variable: categorical
- Parameter of interest: $p_1 p_2$
 - This parameter of interest only makes sense if **both** variables only have two categories.

It is time to learn how to study the relationship between two categorical variables when at least one has more than two categories.

s only have two categories. egorical variables when <mark>at</mark>

Hypotheses

 H_o : The two variables are independent.

 H_a : The two variables are dependent.

15

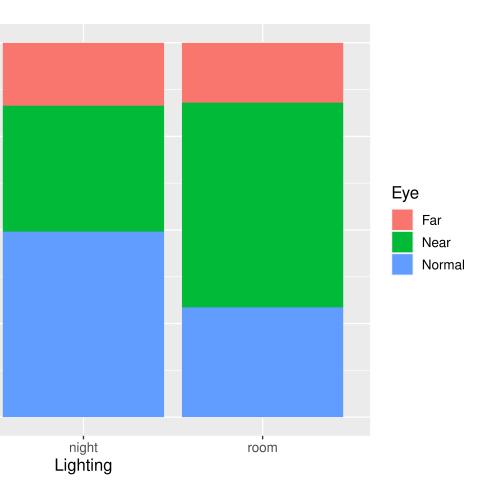
Example

Near-sightedness typically develops during the childhood years. Quinn, Shin, Maguire, and Stone (1999) explored whether there is a relationship between the type of light children were exposed to and their eye health based on questionnaires filled out by the children's parents at a university pediatric ophthalmology clinic.

```
library(tidyverse)
    library(infer)
  2
  3
    # Import data
  4
    eye data <- read csv("data/eye lighting.csv")</pre>
  5
  6
    # Contingency table
  7
    eye data %>%
  8
      count(Lighting, Eye)
  9
# A tibble: 9 \times 3
  Lighting Eye
                        n
            <chr> <int>
  <chr>
1 dark
            Far
                       40
2 dark
                       18
            Near
3 dark
            Normal
                      114
4 night
                       39
            Far
5 night
                       78
            Near
6 night
                      115
            Normal
                       12
7 room
            Far
                       41
8 room
            Near
                       22
9 room
            Normal
```

Eyesight Example

Does there appear to be a relationship/dependence?



Need a test statistic!

- Won't be a single sample statistic.
- Needs to measure the discrepancy between the observed sample and the sample we'd expect to see if H_o (no relationship) were true.
- Would be nice if its null distribution could be approximated by a known probability model.

Observed Sample Table

1	table(eye_	_data\$Eye,	eye_	_data\$Lighting)	응>응
---	------------	-------------	------	------------------	-----

- 2 addmargins() %>%
- 3 kable(format = "html")

	dark	night	room	Sum
Far	40	39	12	91
Near	18	78	41	137
Normal	114	115	22	251
Sum	172	232	75	479

Expected Sample Table

Question: If H_o were correct, is this the table that we'd expect to see?

	dark	night	room	Sum
Far	53	53	53	159
Near	53	53	53	159
Normal	53	53	53	159
Sum	159	159	159	477

Observed Sample Table

1	table(eye_	_data\$Eye,	eye_	_data\$Lighting)	응>응
---	------------	-------------	------	------------------	-----

- addmargins() %>% 2
- 3 kable(format = "html")

	dark	night	room	Sum
Far	40	39	12	91
Near	18	78	41	137
Normal	114	115	22	251
Sum	172	232	75	479

Expected Sample Table

would we expect to see?

eye condition proportions:

- Question: If H_o were correct, what table
- Want a H_o table that respects the overall
 - $\hat{p}_{far}=91/479$ $\hat{p}_{nor}=251/479$ $\hat{p}_{nea}=137/479$

Observed Sample Table

- 1 table(eye_data\$Eye, eye_data\$Lighting) %>%
- 2 addmargins() %>%
- 3 kable(format = "html")

,				
	dark	night	room	Sum
Far	40	39	12	91
Near	18	78	41	137
Normal	114	115	22	251
Sum	172	232	75	479

Still have the same totals but distributed the values differently within the table

Expected Sample Table

5663

Question: If H_o were correct, what table would we expect to

Observed Sample Table

1	table(eye_	_data\$Eye,	eye_	_data\$Lighting)	응>응
---	------------	-------------	------	------------------	-----

- addmargins() %>% 2
- kable(format = "html") 3

	dark	night	room	Sum
Far	40	39	12	91
Near	18	78	41	137
Normal	114	115	22	251
Sum	172	232	75	479

Expected Sample Table

would we expect to see?

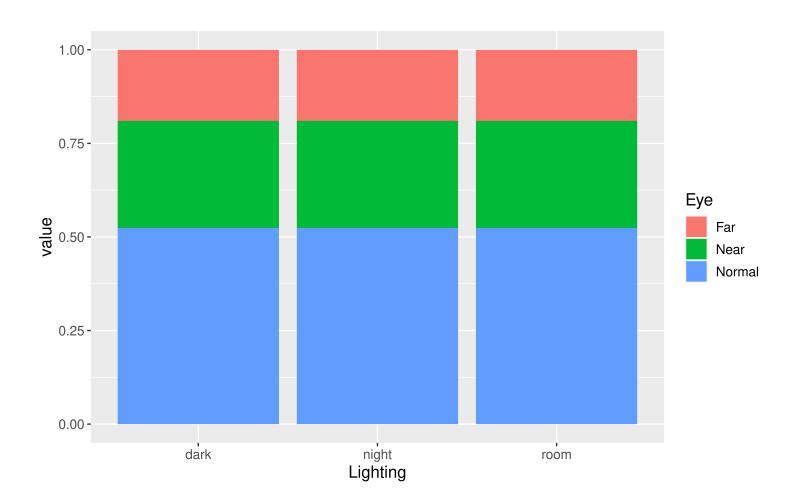
	dark	night	room	Sum
Far	32.7	44.1	14.2	91.0
Near	49.2	66.4	21.5	137.1
Normal	90.1	121.6	39.3	251.0
Sum	172.0	232.1	75.0	479.1

Question: If H_o were correct, what table

Expected Table

How does this table represent H_o ?

	dark	night	room	Sum
Far	32.68	44.08	14.25	91.01
Near	49.19	66.35	21.45	136.99
Normal	90.13	121.57	39.30	251.00
Sum	172.00	232.00	75.00	479.00



Want the test statistic to quantify the difference between the observed table and the expected table.

	dark	night	room	Sum		dark	night	room	Sum
Far	40	39	12	91	Far	32.68	44.08	14.25	91
Near	18	78	41	137	Near	49.19	66.35	21.45	137
Normal	114	115	22	251	Norma	al 90.13	121.57	39.30	251
Sum	172	232	75	479	Sum	172.00	232.00	75.00	479

For each cell: Compute a Z-score!

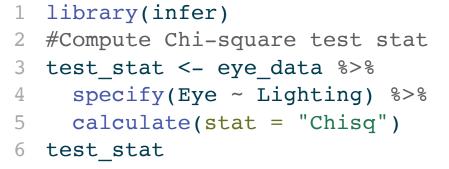
$$Z\text{-score} = \frac{\text{stat - mean}}{\text{SE}}$$
$$= \frac{\text{observed - expected}}{\sqrt{\text{expected}}}$$

Want the test statistic to quantify the difference between the observed table and the expected table.

	dark	night	room
Far	1.28	-0.76	-0.60
Near	-4.45	1.43	4.22
Normal	2.51	-0.60	-2.76

Test Statistic Formula:

 $\chi^2 = \sum \left(\frac{\text{observed - expected}}{\sqrt{\text{expected}}} \right)^{\tilde{}}$

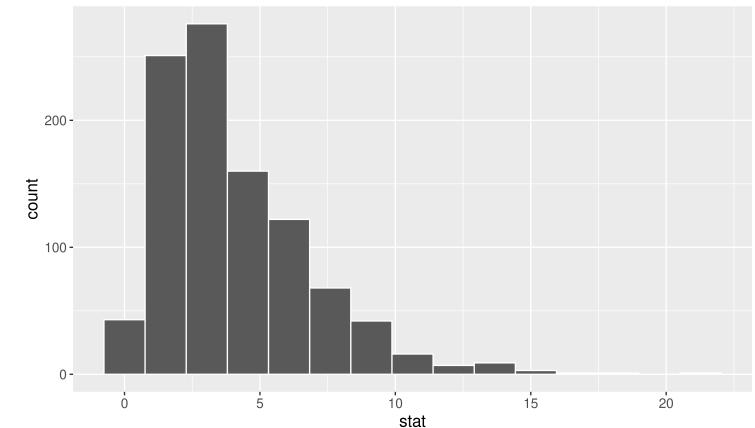


Response: Eye (factor) Explanatory: Lighting (factor) # A tibble: 1×1 stat <dbl> 1 56.5

Questions:

- 1. Is a test statistic unusual if it is a large number or a small number?
- 2. Is 56.5 unusual under H_o ?

Generating the Null Distribution



The Null Distribution

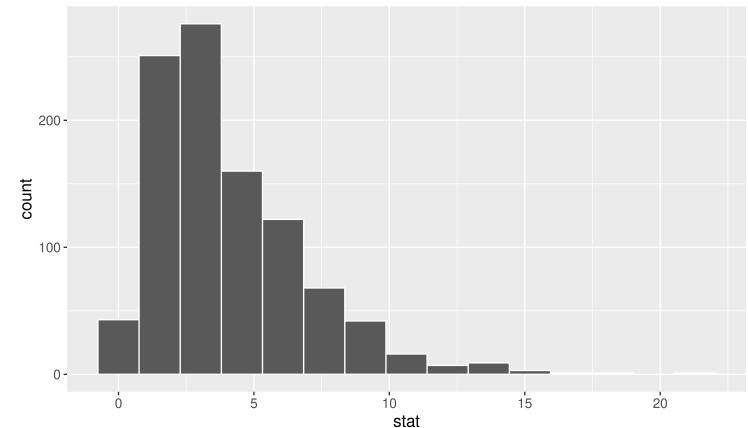
Key Observations about the distribution:

Smallest possible value?

Shape?

Is our observed test statistic of 56.5 unusual?

Simulation-Based Null Distribution



The P-value

- 1 # Compute p-value
- 2 null_dist %>%

```
3 get_pvalue(obs_stat = test_stat, direction = "greater")
```

```
# A tibble: 1 × 1
    p_value
        <dbl>
1 0
```

29

Approximating the Null Distribution

If there are at least 5 observations in each cell, then

test statistic $\sim \chi^2(df = (k-1)(j-1))$

where k is the number of categories in the response variable and j is the number of categories in the explanatory variable.

The df controls the center and spread of the distribution.

1)) j is the number of

The Chi-Squared Test

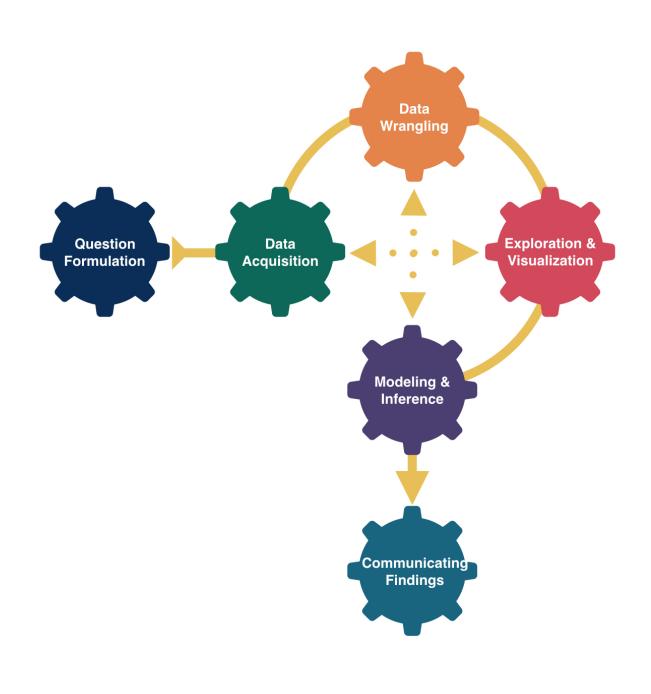
chisq.test(table(eye_data\$Eye, eye_data\$Lighting)) 1

```
Pearson's Chi-squared test
```

```
data: table(eye_data$Eye, eye_data$Lighting)
X-squared = 56.513, df = 4, p-value = 1.565e-11
```

- Conclusions?
- Causal link between room lighting at bedtime and eye conditions?
- Decisions, decisions...

(Some of the) Course Learning Objectives



- Learn how to analyze data in R.
- Master creating graphs with ggplot2.
- Apply data wrangling operations with dplyr.
- Translate a research problem into a set of relevant questions that can be answered with data.
- Reflect on how sample design structures impact potential conclusions.
- Appropriately apply and draw inferences from a statistical model, including quantifying and interpreting the uncertainty in model estimates.
- Develop a reproducible workflow using R Quarto documents.

Checklist of Remaining Stat 100 Items

- Sign up for an oral exam slot.
- Finish P-Set 9 by 5pm on Tuesday.
- \sim Complete the Extra Credit Lecture Quiz by 5pm on Tuesday.
- **?** Come by office hours with any questions while studying for the final exam.
- Complete the oral exam on Dec 13th or 14th and the in-class on Dec 15th at 9am noon.

- in SC 316.
- secondary.
- know how to interpret a p-value.

Attend the ggparty on Thursday at noon

Consider what other stats classes to take now that I am 25% of the way to a stats

Add a calendar note to email Prof McConville on 12/4/33 to show her I still

Thanks for a wonderful semester!